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ABSTRACT

Weak gravitational lensing surveys using photometric redshifts can have their cos-

mological constraints severely degraded by errors in the photo-z scale. We explore the

cosmological degradation vs the size of the spectroscopic survey required to calibrate

the photo-z probability distribution. Previous work has assumed a simple Gaussian

distribution of photo-z errors; here we describe a method for constraining an arbitrary

parametric photo-z error model. As an example we allow the photo-z probability distri-

bution to be the sum of Ng Gaussians. To limit cosmological degradation to a fixed level,

photo-z models with multiple Gaussians require up to 5× larger calibration sample than

one would estimate from assuming a single-Gaussian model. This degradation saturates

at Ng ≈ 4. Assuming a single Gaussian when the photo-z distribution has multiple pa-

rameters underestimates cosmological parameter uncertainties by up to 35%. The size

of required calibration sample also depends upon the shape of the fiducial distribution,

even when the RMS photo-z error is held fixed. The required calibration sample size

varies up to a factor of 40 among the fiducial models studied, but this is reduced to a

factor of a few if the photo-z parameters are forced to be slowly varying with redshift.

Finally we show that the size of the required calibration sample can be substantially

reduced by optimizing its redshift distribution.

Subject headings: cosmology – gravitational lensing, large-scale structure of the universe

1. Introduction

Explaining the Hubble acceleration, i.e. the “dark energy,” is one of the main challenges to

cosmologists. Weak gravitational lensing (WL) has perhaps the most potential to constrain dark

energy parameters of any observational window, but is a newly developed technique which could

be badly degraded by systematic errors (Albrecht et al 2005). A WL survey requires an estimate of

the shape and the redshift of each source; dominant observational systematic errors are expected
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to be errors in galaxy shape due to uncorrected influence of the point spread function (PSF),

and errors in estimation of redshift distributions if they are determined by photometric redshifts

(photo-z). Interpretation of WL data could also be systematically incorrect due to errors in the

theory of the non-linear matter power spectrum, or intrinsic alignments of galaxies. In this paper

we present a new and more general analysis of the effect of photo-z calibration errors, and of the

size of spectroscopic survey required to reduce photo-z errors to a desired level.

Recent work has addressed many of these potential systematic errors in WL data and theory:

from the computation of the non-linear matter power spectrum (Vale & White 2003; White & Vale

2004; Heitmann et al. 2004; Huterer & Takada 2005; Hagan, Ma & Kravtsov 2005; Linder & White

2005; Ma 2006; Francis et al. 2007); from baryonic cooling and pressure forces on the distribu-

tion of large-scale structures (White 2004; Zhan & Knox 2004; Jing et al. 2006; Rudd et al. 2007;

Zentner et al. 2007); approximations in inferring the shear from the maps (Dodelson & Zhang 2005;

White 2005; Dodelson et al. 2006; Shapiro & Cooray 2006); the presence of dust (Vale et al. 2004).

The promise and problems of WL have stimulated work on how to improve the PSF reconstruction

(Jarvis & Jain 2004), estimate shear from noisy images (Bernstein & Jarvis 2002; Hirata & Seljak

2003; Hoekstra 2004; Heymans et al. 2006; Nakajima & Bernstein 2006; Massey et al. 2007), and

protect against errors in the theoretical power spectrum at small scales (Huterer & White 2005).

For visible-NIR WL galaxy surveys, the dominant systematic error is likely to be inaccuracies

in the photo-z calibration. The effect of photo-z calibration on weak lensing is studied by Ma et al.

(2006); Huterer et al. (2006); Jain et al. (2006); Abdalla et al. (2007); and Bridle & King (2007).

The distributions of photo-z errors assumed for these studies are, however, much simpler than will

exist in real surveys (Dahlen et al. 2007; Oyaizu et al. 2007; Wittman et al. 2007). Huterer et al.

(2006) assumed that photo-z errors take the form of simple shifts (a bias that varies with z), while

(Ma et al. 2006) assume the photo-z error distribution is a Gaussian, with a bias and dispersion

that are functions of z. These studies find that dark energy constraints are very sensitive to the

uncertainties of photo-z parameters. A spectroscopic calibration sample of galaxies on the order

of 105 is required to have less than 50% degradation on dark energy constraints. In this work, we

relax the Gaussian assumption, presenting a method to evaluate the degradation of dark-energy

parameter accuracy vs the size of spectroscopic calibration survey, for the case of a photo-z error

distribution described by any parameterized function. We then apply this to a model in which the

core of the photo-z error distribution is the sum of multiple Gaussians, ignoring for now the effect

of so-called catastrophic photo-z errors or outliers.

The outline of the paper is as follows. In §2, we introduce the formalism and parameterizations

of cosmology, galaxy redshift distributions and photometric redshift errors. The implementation

of the formalism is detailed in §3. We show the dependence of the size of the calibration sample

on the number of Gaussians and shapes of the fiducial photo-z models in §4. We illustrate the

effectiveness of optimizing the calibration sample in §5. We discuss our results and conclude in §6.
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2. Methodology

Two major generalizations are made to the work done in Ma et al. (2006). One is that we

do not assume a priori knowledge of the true underlying (unobserved) galaxy redshift distribution

n(z). Instead we treat it as an unknown function which must be constrained by the photo-z

distribution n(zph) and other observables. The other modification we make is to generalize the

photo-z probability distribution to generic parametric functions, in our case multiple Gaussians.

2.1. Galaxy redshift distributions and parameters

One of the observables that a weak lensing survey would provide is the galaxy photo-z distri-

bution n(zph). The corresponding galaxy true redshift distribution n(z) is unknown. These two

galaxy redshift distributions are related by the photo-z probability distribution P (zph|z),

n(zph) =

∫

n(z)P (zph|z)dz . (1)

In practice we will model the true n(z) as a linear interpolation between values ni at a discrete set

of redshifts {zi}. The ni become free parameters in a fit to the observables.

Weak lensing tomography (Hu 1999; Huterer 2002) extracts temporal information by dividing

n(zph) into a few photo-z bins. The true distribution of galaxies ni(z) that fall in the ith photo-z

bin with z
(i)
ph < zph < z

(i+1)
ph becomes

ni(z) =

∫ z
(i+1)
ph

z
(i)
ph

dzph n(z)P (zph|z) . (2)

Ma et al. (2006) had taken P (zph|z) to be a Gaussian, described by two parameters at a given value

of z. Now we allow a generic dependence on a set of photo-z parameters pµ index by µ, P (zph|z; pµ).

The total number of galaxies per steradian

nA =

∫

∞

0
dzn(z) , (3)

fixes the normalization, and we analogously define

nA
i =

∫

∞

0
dzni(z) (4)

for the tomographic bins.

2.2. Observables

We utilize information from both lensing and redshift surveys which include galaxy photo-z

distribution and the spectroscopic calibration sample for the photo-z’s.
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2.2.1. Lensing cross-spectra

Following Ma et al. (2006), we choose the number weighted convergence power spectra nA
i nA

j P κ
ij(ℓ)

as lensing observables3, where i and j label tomographic bins. From Kaiser (1992, 1998) we have,

nA
i nA

j P κ
ij(ℓ) =

∫

∞

0
dz Wi(z)Wj(z)

H(z)

D2(z)
P (kℓ, z) , (5)

where H(z) is the Hubble parameter, and D(z) is the angular diameter distance in comoving

coordinates. P (kℓ, z) is the three-dimensional matter power spectrum and kℓ = ℓ/D(z) is the

wavenumber that projects onto the multipole ℓ at redshift z. The weights W are given by

Wi(z) =
3

2
Ωm

H2
0D(z)

H(z)
(1 + z)

×
∫

∞

z
dz′ni(z

′)
DLS(z, z′)

D(z′)
, (6)

where DLS(z, z′) is the angular diameter distance between the two redshifts. We compute a power

spectrum from the transfer function of Eisenstein & Hu (1999) with dark energy modifications from

Hu (2002), and the non-linear fitting function of Peacock & Dodds (1996).

2.2.2. Photo-z distribution

Another set of observables from the redshift surveys is the galaxy photo-z distribution, n(zi
ph),

collected into some Ngpzd bins. The width δzph of these bins would typically be much finer than

the tomography bins, and should be at least as fine as the nodes zi on which the true redshift

distribution is defined. Binning equation 1, we have,

n(zi
ph)δzph =

∫

n(z)P (zph|z; pµ)δzphdz . (7)

So the observables are functions of the intrinsic distribution {ni} and the photo-z parameters pµ.

2.2.3. Spectroscopic redshifts

The last piece of information we utilize is the spectroscopic calibration sample. We presume

that a representative sample of N i
spect galaxies has been drawn from the sources in redshift bin i,

with spectroscopic redshifts determined for all of them. Equivalently we can demand that the failure

rate for obtaining redshifts in the spectroscopic survey must be completely independent of redshift.

3Since we are using all the information from galaxy number distribution in this study, one could equally well use

Pij as lensing observables.
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The likelihood of the jth spectroscopic survey galaxy with photo-z value zj
ph being observed to

have spectroscopic redshift zj is of course derived from P (zj
ph|zj ; pµ). Each spectroscopic redshift

hence adds a little more constraint to the photo-z parameters. We presume all the spectroscopic

z’s are independent, i.e. we ignore source clustering. While this may be unrealistic in practice for

spectroscopic surveys over small areas of sky, it is more likely—and adequate—that the redshift

errors are uncorrelated, so that we can constrain P (zph − z|z) with N i
spect independent samples.

We have considered the spectroscopic sample to constrain P (zph|z), which can combine with

photo-z counts n(zi
ph) to constrain the true redshift distribution n(z). One could potentially assume

the spectroscopic sample to sample and constrain n(z) directly. We avoid this for two reasons:

first, claiming both uses for the spectroscopic sample would be “double-counting” its information.

Second, a direct constraint of n(z) would depend heavily on the assumption that the calibration

sample is a fair representation of the full photo-z sample. Source clustering in the spectroscopic

sample would be more of an issue. Also we will investigate below the possibility of targeting

calibration samples at rates that vary with redshift. In this situation, the calibration sample could

deviate from the true underlying galaxy redshift distribution by quite a bit.

It remains crucial, in any case, that the calibration sample is a fair representation of the photo-z

sample within each redshift bin. For example, if we are taking spectra for 5% of the photo-z sample

in some redshift bin, we must be sure to draw 5% of the blue galaxies and 5% of the red galaxies

for our complete spectroscopic survey, and succeed in obtaining redshifts for all regardless of color.

2.3. Fisher Matrix

The Fisher matrix quantifies the information contained in the observables which include lensing

and redshift surveys,

F total
µν = F lens

µν + F
n(zph)
µν + F spect

µν , (8)

and the errors on the parameters are given by ∆pµ = [Ftotal]
−1/2
µµ .

2.3.1. Lensing cross spectra

F lens
µν quantifies the information contained in the lensing observables

Oa(ℓ) = nA
i nA

j P κ
ij(ℓ) , (a ≡ {ij}, i ≥ j) (9)

on a set of cosmological, photo-z parameters pµ and the underlying galaxy redshift distribution

parameters. Under the approximation that the shear fields are Gaussian out to ℓmax, the Fisher

matrix is given by

F lens
µν =

ℓmax
∑

ℓ=2

(2ℓ + 1)fsky

∑

ab

∂Oa

∂pµ
[C−1]ab

∂Ob

∂pν
. (10)
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Given shot and Gaussian sample variance, the covariance matrix of the observables becomes

Cab = nA
i nA

j nA
k nA

l

(

P tot
ik P tot

jl + P tot
il P tot

jk

)

, (11)

where a ≡ {ij}, b ≡ {kl}. The total power spectrum is given by

P tot
ij = P κ

ij + δij
γ2
int

nA
i

, (12)

where γint is the rms shear error per galaxy per component contributed by intrinsic ellipticity and

measurement error. For illustrative purposes we will use ℓmax = 3000, fsky corresponding to 20000

sq. deg, n̄A corresponding to 30 galaxies/arcmin2 and γint = 0.22. This is what might be expected

from an ambitious ground-based survey like the Large Synoptic Survey Telescope (LSST).4

For the cosmological parameters, we consider four parameters that affect the matter power

spectrum: the physical matter density Ωmh2(= 0.14), physical baryon density Ωbh
2(= 0.024),

tilt ns(= 1), and the amplitude δζ(= 5.07 × 10−5 ; or A = 0.933 Spergel et al. (2003)). Values

in parentheses are those of the fiducial model. To these four cosmological parameters, we add

three dark energy parameters: the dark energy density ΩDE(= 0.73), its equation of state today

w0 = pDE/ρDE|z=0(= −1) and its derivative wa = −dw/da|z=0(= 0) assuming a linear evolution

with the scale factor w = w0 + (1 − a)wa. Unless otherwise stated, we shall take Planck priors on

these seven parameters (W. Hu, private communication).

2.3.2. Photo-z distribution

F
n(zph)
µν quantifies the information contained in the galaxy photo-z distribution. We use the

model of equation (7) to find the dependence of each observable n(zi
ph) on the true redshift and

photo-z parameters. Each bin is presumed to have Poisson uncertainties

σ(n(zi
ph)δzph) = [n(zi

ph)δzph]−
1
2 . (13)

In practice the number of photo-z’s will be large, and Fn(zph) acts like a linear constraint on the

other parameters.

2.3.3. Spectroscopic redshifts

F spect
µν quantifies the information contained in the spectroscopic calibration sample on photo-z

parameters pµ. The simple likelihood analysis of Appendix A shows that the Fisher matrix from

4http://www.lssto.org
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the spectroscopic survey is

F spect
µν =

∑

i

N i
spect

∫

dzph
1

P i(zph|z)

∂P i

∂pµ

∂P i

∂pν
, (14)

where N i
spect spectra have been obtained from redshift bin i (out of Npz), and P i describes the

photo-z errors for this bin.

3. Implementation

We now apply the above formalism to derive Fisher matrices for specific cases of WL surveys

and their associated spectroscopic calibration surveys. In further sections we vary the parameters

of the photo-z errors and the spectroscopic survey and investigate the impact on the accuracy of

dark-energy parameters derived from each survey.

3.1. Redshift distributions

Following Ma et al. (2006), the fiducial galaxy redshift distribution n(z) is chosen to have the

form

n(z) ∝ zα exp
[

−(z/z0)
β
]

. (15)

Unless otherwise stated we will adopt α = 2, β = 1 and fix z0 such that median redshift is

zmed = 1. The parametric model for n(z) is determined by linear interpolation between Npz = 31

values ni = n(zi) at equally spaced redshifts between 0 and 3.

In the Gaussian case as assumed in Ma et al. (2006), we have,

P (zph|z) =
1√

2πσz

exp

[

−(zph − z − zbias)
2

2σ2
z

]

. (16)

The bias zbias and dispersion σz are functions of z.

In reality, P (zph|z) could be far more complex than a single Gaussian. We explore this com-

plexity by assuming P (zph|z) as the sum of Gaussians. Using Ng Gaussians to describe P (zph|z),

we have,

P (zph|z) =

Ng
∑

j=1

Cj√
2πσz;j

exp

[

−(zph − z − zbias;j)
2

2σ2
z;j

]

, (17)

where Cj is the normalization of the jth Gaussian. Since we assume P (zph|z) is normalized to unity,

we have
∑

j Cj = 1. We allow the biases zbias;j(z) and scatters σz;j(z) to be arbitrary functions

of redshift. The redshift distribution of the tomographic bins defined by equation 2 can then be
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written as

ni(z) =
1

2
n(z)

Ng
∑

j

Cj [erf(xi+1;j) − erf(xi;j)], (18)

with

xi,j ≡ (z
(i)
ph − z + zbias;j)/

√
2σz;j , (19)

where erf(x) is the error function.

In practice, we will represent the free functions zbias;j(z) and σz;j(z) by linear interpolation

between values at discrete set of Npz redshifts equally spaced from z = 0 to 3. The photo-z

parameter set {pµ} are hence the 2NgNpz values of the biases and dispersions of the Gaussians at

these nodes.

With multiple Gaussians, we can describe a wide variety of photo-z probability distributions

P (zph|z). Figure 1 shows a few examples of P (zph|z). A wide variety of behaviors can be repre-

sented, including “catastrophic” outliers. Although catastrophic photo-z errors could potentially

have a big impact on what we can get out of cosmic shear surveys (Amara, & Refregier 2006), we

will restrict ourself to studying the core of P (zph|z) in this study.
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Fig. 1.— Examples of photo-z probability distribution P (zph|z). From left to right, they are two

Gaussians with different biases, two Gaussians with different σz’s, three Gaussians with parameters

randomly generated and three Gaussians with one being catastrophic. The thick solid line is the

total P (zph|z) and the thin dotted lines are the individual Gaussians that build up P (zph|z).

Ma et al. (2006) show that Npz = 31 between z = 0 and 3 gives enough freedom to the photo-z

parameters to destroy all tomographic information. Since we are giving the photo-z even more

freedom by allowing P (zph|z) to be multiple Gaussians, Npz = 31 should be large enough. Unless

stated otherwise, we use Npz = 31. Thus the total number of photo-z parameters is Ng × 62.

The observables n(zi
ph), determined in bins of width δzph, need not have the same bin width

as the spacing of the n(zi) or the photo-z parameters. In fact they should be more finely spaced.

We choose the size of δzph such that further dividing it by two does not gain information anymore.

We find that δzph = 0.0125 is small enough for all the photo-z models explored in this study.
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4. Size of the spectroscopic calibration sample

In this section we investigate the size of the spectroscopic calibration sample required to limit

photo-z systematics to some desired level. In particular we are interested in the increased demands

that might result from giving the photo-z distribution freedom to depart from a single-Gaussian

form. We first demonstrate that, for a fixed fiducial photo-z model, the required calibration size

increases with the number of degrees of freedom (2Ng) that we allow for deviations from the fiducial

model. This increase reaches an asymptotic limit with Ng.

Second we will investigate how the required Nspect varies as we allow the fiducial model to

assume non-Gaussian shapes. Equations A-9 and A-10 show that in the case of a Gaussian distri-

bution, the Nspect required to constrain the photo-z parameters is proportional to the square of the

width of the distribution. In the following, we hold the width (defined as the RMS) of the fiducial

photo-z distributions to be 0.05(1+ z). Holding this fiducial width fixed means that any variations

we see are due only to variations in the shape of the photo-z probability distribution.

We use the error degradations in wa (that is, errors in wa relative to the error with perfect

knowledge of photo-z parameters) as the measure of dark energy degradations. The error degrada-

tions in wp
5 are about 30− 50% lower and follow the same trend as that of wa. Roughly speaking,

the figure of merit (FoM) adopted by the Dark Energy Task Force (DETF, Albrecht et al. (2006))

will degrade as square of the dark energy degradation used here.

In this section we will assume that the Nspect total spectroscopic galaxies are selected uniformly

in redshift between 0 and 3.

4.1. Dependence on the number of Gaussians Ng

The left panel of Figure 2 plots the dark-energy degradation vs the size of the spectroscopic

calibration sample, when the photo-z error distribution has Ng = 1, 2, 3, and 4. The fiducial biases

and dispersions are the same for all component Gaussians. So the fiducial P (zph|z) is identical in

all cases, but with higher Ng there is more freedom for deviations from the fiducial. The second,

third, and fourth Gaussian components are each fixed to have one-fourth the total normalization

of the distribution.

At fixed dark energy degradation, the required size of the calibration sample (Nspect) increases

with the number of Gaussians and reaches an asymptotic value when Ng ≈ 4. When dark energy

degradation is 1.5, the Ng = 4 photo-z model requires ≈ 5 times the calibration sample of Ng = 1

model.

Another view is that the dark-energy uncertainties will be underestimated if one fits a single-

5
wp ≡ w(z = zp), where zp is the redshift that the errors of w0 and wa are decorrelated.
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Gaussian model to photo-z distributions that actually require more freedom. For example, assume

we obtain 4×104 spectra, as required to keep dark energy degradation under 1.5 for single Gaussian

photo-z model. We find, however that the dark energy degradation for Ng = 4 rises above 2.0. So

relaxing the Gaussian assumption for photo-z’s inflates the cosmological uncertainties by ≈ 35%.
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Fig. 2.— Left panel: Nspect requirement for the same fiducial photo-z models but modeled using

different number of Gaussians. These Gaussians differ only by their normalizations whose ratio are

shown in the legend. The solid line is for the case of single Gaussian (Ng = 1). RMS of P (zph−z|z)

is 0.05(1 + z) and the survey specs are LSST-like. Right panel: The thin lines are the same as

these in the left panel but with RMS of P (zph − z|z) set to be 0.03(1 + z). For comparison, the

four-Gaussian model in the left panel is plotted as the thick dotted line (magenta). The thick solid

line (red) is the single Gaussian model with SNAP-like survey specs (fsky = 4000 sq. deg, n̄A = 100

galaxies/arcmin2 and γint = 0.22).

We also note from the left panel of Figure 2 that the dark-energy degradation has a charac-

teristic dependence on Nspect: for Nspect & 103, the DE parameter error scales roughly as N
1/4
spect.

When the DE degradation reaches ≈ 1.2, at Nspect = 105–106, the gains from additional spectra

become weaker and a degradation of unity is approached only very slowly. As we vary Ng, we

change the location of this “knee” in the curve, but not the scaling for Nspect below the knee. This

scaling is not sensitive to either the fiducial photo-z models or survey specs. For example, as shown

in the right panel of Figure 2, for a photo-z model with σz = 0.03(1 + z), the scaling is N
1/5
spect; for
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SNAP6-like survey with fsky = 4000 sq. deg, n̄A = 100 galaxies/arcmin2 and γint = 0.22 the scaling

is also N
1/5
spect as shown in the right panel of Figure 2.

4.2. Dependence on the fiducial photo-z models

The left panel of Figure 3 shows DE degradation vs Nspect for several Ng = 2 models, all

having fiducial RMS width 0.05(1+z), but with different fiducial biases and dispersions for the two

components. In detail, our study includes: photo-z models that the component Gaussians have the

same biases but different σz’s (2G σz diff) and vice-versa (2G zbias diff); the same biases and σz’s

but with normalizations at 3 to 1 ratio (2G 3:1); and ten models whose parameters zbias;j and σz;j

are randomly assigned.

The Nspect requirements span a rather large range. For example, at 50% dark energy degra-

dation, most of the photo-z models’ Nspect requirement is within a factor of four of that of the

single-Gaussian model. But some of the models require 40 times more Nspect. Three- and four-

Gaussian photo-z models exhibit similar behaviors.
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Fig. 3.— Nspect requirement for different fiducial photo-z models with Ng = 2. Left panel:

information from the galaxy photo-z distribution n(zph) and the spectroscopic calibration sample

are used to constrain the underlying galaxy redshift distribution n(z) and photo-z parameters;

Middle panel: same as the left panel except that information from n(zph) is not utilized, and n(z)

is held fixed. Right panel: Within each of the three δz = 1 intervals, the fiducial zbias’s and σz’s

increase linearly with 1 + z. The proportionalities are generated randomly. In all three panels, the

thick solid red line is for the case of single Gaussian (Ng = 1).

To understand the wide range of Nspect requirements for different photo-z models, we perform

6http://snap.lbl.gov
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the following test. We fix the underlying galaxy redshift n(z) and do not use any information from

n(zph). The resulting Nspect requirements for the double-Gaussian photo-z models are shown in

the middle panel of Figure 3. At fixed dark energy degradation, the range of Nspect requirements

is greatly reduced. For example, at 50% dark energy degradation, Nspect requirements is within a

factor of two of that of the single-Gaussian model. We find similar reduction of the range of Nspect

requirements in the case of three- and four-Gaussian models.

The test shows that the reason for the wide range of Nspect requirements for different photo-

z models is that n(zph) constrains the underlying galaxy redshift distribution and the photo-z

parameters much better in some of the photo-z models than others. It is the redshift knowledge,

rather than weak lensing information itself, that is sensitive to the details of the photo-z probability

distribution.

One possible cause of the poor sensitivity in some photo-z models is rapid variation of photo-z

parameters in redshift. The right-hand panel of figure 3 shows the result of reducing the degree of

rapid variation of photo-z parameters. The range of Nspect is reduced to within a factor of four

of that of the single-Gaussian model as shown in right hand panel. In detail, we demand that the

fiducial photo-z parameters zbias’s and σz’s to be proportional to 1 + z within each of the three

redshift intervals with width δz = 1. The proportionalities are generated randomly. These photo-z

models are much smoother than those randomly generated in the left panel of figure 3. This test

shows that n(zph) is less effective in constraining the underlying galaxy redshift distribution and

photo-z parameters when the photo-z model is rapidly varying. In reality, photo-z parameters

would most likely show smooth variations in redshift. The required calibration sample is expected

to be within a factor of few times that of the single-Gaussian fiducial model.

We point out that multi-Gaussian cases may require less spectroscopic calibration galaxies than

the single-Gaussian case. As an example, examine the photo-z model with double Gaussians whose

σz’s are different. Its Nspect requirement is shown in figure 3 left panel using the dotted blue line.

Since we keep the width of P (zph|z) fixed, one of the Gaussians in the double-Gaussian photo-z

model is narrower than the width of P (zph|z) and the other Gaussian is broader. The narrower

Gaussian tends to reduce the Nspect requirement while the broader one tends to do exactly the

opposite. The outcome of these competing effects could be either smaller or larger requirement of

the calibration sample. For this particular photo-z model, the required Nspect crosses that of the

single-Gaussian model (shown as the thick solid red curve in figure 3 left panel).

We note that the generic behavior σwa
∝ N0.2−0.25

spect continues to hold for all the fiducial dis-

tributions, until the DE degradation drops to 1.2–1.3. This inflection typically occurs with a few

×105 spectra, for the LSST survey parameters assumed here.
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5. Optimizing the spectroscopic calibration sample

So far we have been assuming that the calibration sample is uniformly distributed in redshift.

Weak lensing may require more precise photo-z calibration at some redshifts than others. It could

be beneficial if we distribute the calibration sample according to lensing sensitivity. Our goal is to

find the N i
spect that leads to the best dark energy constraints for fixed spectroscopic observing time

Tobs. This could be modeled as follows,

σ(dark energy parameters) = function(N i
spect , i = 1, 2, ...) , (20)

∑

i=1

N i
spectcost(z

i) = Tobs , (21)

where cost(zi) is the time it takes to obtain spectrum of a galaxy at redshift zi. This is a con-

strained nonlinear optimization problem. To calculate the function in equation 20, we first calculate

the Fisher matrices F lens and Fn(zph) for the presumed survey. Then for each trial set of N i
spect,

we calculate F spect using equation 14, sum the Fisher matrices, and forecast the dark energy un-

certainties. As to the constraint equation (21), we need to know the cost function. For illustrative

purpose, we will assume cost(zi) is a constant.
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Fig. 4.— The histogram: optimal Nspect distribution in redshift for single-Gaussian model. Dark

energy degradation is 56% if this sample is distributed evenly in redshift. The Nspect distribution

in this figure lowers dark energy degradation to 38% which would require 69, 000 galaxy spectra to

calibrate if the distribution is flat in redshift. Blue dashed line: a smooth fit to the histogram. The

dark energy degradation is 44% if this calibration sample is used. For both the histogram and the

smooth fit, the calibration sample has 37,500 galaxies.

As an example we choose a calibration sample of 37,500 galaxies and assume a single-Gaussian

photo-z model. If this calibration sample is evenly distributed in redshift, dark energy degradation
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is 56%. The optimized calibration sample, whose distribution is shown as the histogram in figure 4,

lowers the dark energy degradation to 38%. That is a 18% gain in dark energy precision at

fixed investment of spectroscopy time. From a different prospective, to reach 38% dark energy

degradation with a uniformly distributed calibration sample, 69, 000 galaxy spectra are required.

So optimization saves 46% of the spectroscopic observing time for fixed cosmological degradation.

Multi-Gaussian photo-z models exhibit very similar behaviors.

We do not know exactly why the optimized calibration sample distribution is not very smooth.

It would be rather difficult to plan the observation to match this distribution. Fortunately, a

smooth distribution like the one shown using the blue dashed line in figure 4 produces 44% dark

energy degradation, which is a moderate improvement over the uniform case.

6. Conclusion & Discussion

We explore the dependence of cosmological parameter uncertainties in WL power-spectrum

tomography on the size of the spectroscopic sample for calibration of photometric redshifts. We

present a formula valid for arbitrary parameterization of the photo-z error distribution, and then

apply this to a multi-Gaussian model to see whether previous works’ assumptions of simple Gaussian

photo-z errors were yielding accurate results.

Indeed we find that the required Nspect under the simple Gaussian model is increased ≈ 4×
when we allow more freedom in the shape of the core of the photo-z distribution. Fortunately there

appears to be an asymptotic upper limit as we add more photo-z degrees of freedom.

We also find a generic behavior d log σ/d log Nspect =0.20–0.25, where σ is the uncertainty in a

dark-energy parameter, in the regime where σ is degraded 1.2–5× compared to the case of perfect

knowledge of the photo-z distribution. Hence the fourfold increase in required Nspect from relaxing

the Gaussian assumption is equivalent to a ≈ 1.3× degradation in σ at fixed Nspect.

The exact value of dark-energy degradation vs Nspect depends significantly on the shape of the

fiducial distribution, even when total RMS photo-z error is held fixed. For the case of the LSST

survey with RMS photo-z error 0.05(1 + z), we find that the “knee” at dark-energy degradation of

1.2–1.3 occurs in the range Nspect ≈ 105–106.

For photo-z models described by non-degenerate Gaussians, the size of the calibration sample

vary by as much as 40 times among the 14 models studied. Most of the variation is caused by the

different ability of galaxy photo-z distribution n(zph) constraining the underlying galaxy redshift

distribution and the photo-z probability distribution. These photo-z models whose parameters

vary rapidly in redshift are the ones that are least constrained. In reality, photo-z parameters are

expected to be smoothly varying in redshift. The Nspect requirement would be only a factor of few

from that of the single-Gaussian fiducial distribution.

Finally we show that the size of the calibration sample can be effectively reduced by optimiza-
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tion. In a simple example, an optimized calibration sample of 37,500 redshifts was able to reach

the same dark-energy degradation as a sample of 69,000 galaxies uniformly distributed in redshift.

We restrict this study to the effect of the core of the photo-z distributions. Catastrophic photo-

z errors could potentially be very damaging. The methodology provided in this study is applicable

to study the effect of catastrophic photo-z errors. We leave this to future work.

The methodology we use assumes that the spectroscopic survey is a fair sample of the photo-z

error distribution, and is the only information available on the photo-z error distribution. Since

we have used a Fisher matrix technique, no photo-z estimation method, regardless of technique

(neural net, template fitting, etc.) can surpass our forecasts under these conditions.

The calibration’s success depends crucially on the spectroscopic redshifts being drawn without

bias from the redshift distribution of the photometric sample it represents. The survey strategy

must be carefully formulated to make sure that this occurs. Differential incompleteness between,

say, red and blue galaxies, or redshift “deserts,” must be avoided. This has not been achieved by

any large redshift survey beyond z ≈ 0.5 to date.

It may be possible to constrain P (zph|z) by other means in the absence of a fair spectroscopic

sample of the size we specify. One could invoke astrophysical assumptions, namely that the spectra

of faint galaxies are identical to those of brighter galaxies, in an attempt to bootstrap a fair bright

sample into a calibration for fainter galaxies. Another suggestion (Schneider et al. (2006); and

J. Newman, private communication) is that the photometric sample be cross-correlated with an

incomplete spectroscopic sample to infer the redshift distribution of the former. It remains to be

seen, however, whether these techniques can attain the accuracy needed to supplant a direct fair

sample of > 105 spectra. This would require some a priori bounds on the evolution of galaxy spectra

and the clustering correlation coefficients of different classes of galaxies. We look forward to future

progress in these techniques, keeping in mind that the demands for precision cosmology from WL

tomography are much more severe than the demands that galaxy-evolution studies typically place

on photometric redshift systems.
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Appendix A: Derivation of equation 14

If one draws N events from a sample with probability distribution function P (x; ~θ), where

the components of ~θ are the parameters specifying the distribution and x is the variable whose

probability distribution is in consideration, what are the constraints on the parameters ~θ?
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Let us first divide x into small bins and label the width of the bins as ∆xi. The number of

events that fall in the ith bin is Poisson distributed with mean N̄i = NP (xi; ~θ)∆xi. The likelihood

function can be expressed as,

L ∝
∏

i

exp(−N̄i)N̄i
Ni

Ni!
, (A-1)

and the natural logarithm of L is,

L ≡ −lnL =
∑

i

N̄i − NilnN̄i + lnNi! + const . (A-2)

The derivatives of L with respect to the model parameters ~θ are

∂L
∂θµ

=
∑

i

(

1 − Ni

N̄i

)

∂N̄i

∂θµ
and, (A-3)

∂2L
∂θµ∂θν

=
∑

i

[

Ni

N̄i
2

∂N̄i

∂θµ

∂N̄i

∂θν
+

(

1 − Ni

N̄i

)

∂2N̄i

∂θµ∂θν

]

. (A-4)

The Fisher matrix is,

Fµν ≡
〈

∂2L
∂θµ∂θν

〉

=
∑

i

1

N̄i

∂N̄i

∂θµ

∂N̄i

∂θν

=
∑

i

N∆xi

P (xi; ~θ)

∂P (xi; ~θ)

∂θµ

∂P (xi; ~θ)

∂θν

= N

∫

dx
1

P (x; ~θ)

∂P (x; ~θ)

∂θµ

∂P (x; ~θ)

∂θν
. (A-5)

In the special case where P (x; ~θ) is a Gaussian with mean µ and spread σ,

P (x;µ, σ) =
1√
2πσ

exp

[

−(x − µ)2

2σ2

]

, (A-6)

we have,
∂P

∂µ
=

x − µ

σ2
P and, (A-7)

∂P

∂σ
= −P

σ
+

(x − µ)2

σ3
P . (A-8)

Plugging these results into equation A-5 gives us,

Fµµ = N

∫

∞

−∞

dx
(x − µ)2

σ4
P =

N

σ2
and, (A-9)

Fσσ = N

∫

∞

−∞

dxP

[

(x − µ)2

σ3
− 1

σ2

]

=
2N

σ2
. (A-10)

Note that Fµσ = 0 since the integral only involves odd powers of x − µ.
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